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Short questions

1. Bloch Sphere

Density matrices satisfy the following 3 conditions:

e The density matrix is Hermitian: pf = p
e [t has trace 1: Trp =1
e It is positive or null : (U[p|¥) >0, V¥

a) Show that any density matrix p of a 2 level system can be written

N P
p=sl+or), (1)

where 6 = (6,,6,,0,). Argue that r is a real vector of 3D space and |r| < 1.
Hint: The eigenvalues of p are (1 + |r|).
(3 marks)

Any Hermitian operator acting on a two-level system can be written as a linear combi-
nation of the Pauli matrices together with the identity operator. Since density matrices
are Hermitian, the density matrix p of an arbitrary two-level system can be written as

p:a1+bax+cay+daz:al—i-o"’l‘/, (2)

where a,b,¢c,d € R, o = (0,,0,,0.) and 7’ = (b, ¢, d). Density matrices must addition-
ally satisfy Trp = 1, which gives the following constraint

Trp="Trjal] =2a=1 = a=1/2, (3)

using that Pauli matrices are traceless and the trace operation is linear. So density
matrices can be written as

p=50+o7) (4)

where r = 2r/. We finally use the last condition that (V|p|¥) > 0 for all |V), which
implies that the eigenvalues should be non-negative. As provided by the hint, the
eigenvalues of p are Ay = (14 |r|)/2 (in particular they sum up to 1 as required), and
by imposing this last condition we get two constraints

1 1
SA+r) =0 and  S(1—|r) >0, (5)

where the first inequality is always satisfy, while the second inequality implies that
lr| < 1.

b) A pure state is a density operator that can be written in the form p = [1)(¢)|. Show
that the Bloch vector r for a pure state has norm 1, |r| =1
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(4 marks)

Method 1: We use the fact that pure states have a purity of 1, i.e. Tr[p?] = Tr[p] = 1.
In that case one has to expand p? and then take the trace. By expanding we get

P = (0420 1)+ (o 7)) (

We previously encountered the term (o -7)? in the exercies, and it gives (o -r)? = |r|*1.
By using the fact that Pauli matrices are traceless, we directly recover the desired result

Tr[p2]:iTr[(l—i—\rF)l—i—Q(a-r)]:}1(2(14—]7“\2)):1 — =1 (7

Method 2: Any quantum state [¢)) of a two-level system can be written as
|¥) :C085‘0>+€ sm§]1>, 6 e€(0,7], ¢el0,2n] (8)

By expanding [¢)(¢)| and equating the resulting expression to (1 + o - 7)/2, we can
recover the Bloch vector

r = (8in 6 cos ¢, sin # sin ¢, cos 0), 9)

which represents a unit vector in spherical coordinates in R3.

c) A mixed state is a density operator that is a convex combination of pure states.
That is,

Pmixed = ZPzWﬁ@M
with 0 <p; <1land ), p, =1.

Based on this definition of a mixed state give a geometric argument to show that the
Bloch vector of a mixed state is always less than 1, |[rpixeq| < 1.

(3 marks)

A mixed state can be written as

N | —

M Moy
Pmixed = ZPJ%H%\ = Zl%a(l +o-1;) =
i1 i1

(1 to- Zpim) . (10)

using that ) . p; = 1. We can then define
Tmixed = Zpi'ria (11)

which corresponds to the resulting Bloch vector of the mixed state ppiceqa. This quantity
indicates the degree of mixedness, and given that 0 < p; <1, > . p; = 1, and |r;| < 1,
it must satisfy |ruixea| < 1. (Geometrically, by summing the weighted arrows/vectors
piT;, the resulting vector rieq Will never escape from the unit sphere.)
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2. Entanglement

Alice, Bob and Charlie share a three qubit state:

1
0 = — (000 + 111 12
pave = 5 (1000) aBc + [111) aBc) (12)

where |+) = \/Li(|0> + |1) are the £1 eigenstates of &, and |0) and |1) are the +1 and
1 eigenstates of &, respectively.

a) Suppose Bob measures his qubit in the &, basis. Find the output states for Alice
and Charlie conditional on Bob’s measuring 0 and conditional on Bob measuring 1.

(2 marks)

If Bob measures 0 (by applying Py = I ® |0){(0| ® I to |)apc), the output state for
Alice and Charlie collapses to

1
—0=——=|00) a¢, 13
1) aciB=0 \/§| )ac (13)
while if he measures 1, the state collapses to

V) acip=1 = %Hl)AC- (14)

b) What if Bob instead measures in the &, basis? State the output states for Alice
and Charlie conditional on Bob’s measurement outcomes in this case.

(3 marks)

We start by rewriting |0) 5 and |1) 5 in the wavefunction [¢) s4pc in terms of |+)p

1 1 1
hane = - [|0>A (ﬁuw ; \—>B>) 0)c+[1)a (ﬁum - |—>B>) m}
(15)
= 1100041006 + 445 + (0)al0)e — [1al1e)l-)s]. (16)

If Bob’s measurement outcome is |+), the output state for Alice and Charlie will be

94 = [Whacip—s = 5(100)ac £ [11).10), a7)

¢) Assuming Bob does not tell Alice or Charlie the output to his measurement, what
is the mixed state that Alice and Charlie share after his measurement in the &, basis?

(2 marks)



If Bob does not reveal to Alice or Charlie his measurement outcome, the state that
Alice and Charlie share is a mixture of the possible states after Bob’s measurement.
The mixed state is given by

pac = 5(100){00] +11)11]). (15)

d) Could Alice and Charlie use this state to violate a Bell inequality? Explain your
answer.

(3 marks)

No, this state, being a mixture of product states, does not include non-classical cor-
relations (through entanglement) that would allow Alice and Charlie to violate Bell
inequality.

. Fermions and Bosons

Which of the following states are valid Fermionic states and which are valid Bosonic

states:
(a) (%wqh ; %wp») <%|R>1|L>2 _ %\meg) (19)
(b) <%|p>1|q>2 f|q p) )|R IR), (20)
(©) ( slphilga + )( Sl %mlmb) (21)
(@) |p>1|q>2|R>1|L> (22)
(©) (%mlm slao )( Sl %|L>1|R>2) (23)
(5 marks)

Valid fermionic states: (a), (b);
Valid bosonic states: (c), (e).

. Symmetry. Consider a unitary irreducible representation R(g) = U, of group G.

a) Use the Grand Orthogonality Theorem to prove that

1 1
~ > U XU] = S Te[X]1 (24)
g

where d = dim(X) and N is the order of the group.
(4 marks)



Given that the representation is unitary and irreducible, the Grand Orthogonality
Theorem can be applied to prove the result of interest

5 S UXUS = 37 S (R X [R(6) ) 8
= S G X 1 (K
jkim (25)

where d is the dimension of the vector space of the representation. In the lecture notes,
this result is called the Irrep Group Averaging Corollary.

The above relation for averaging over irreducible representations of finite groups gen-
eralizes to averaging over compact Lie groups. In this case the finite average % > g
becomes a continuous integral over a uniform measure [ du(g) and we have:

(Xe = [ dnloU, XU} = T{X] T (26)

b) Use this result to explain why applying random single qubit rotations to any single
qubit state on average results in the maximally mixed state.

(3 marks)

Given any single qubit state p, we do indeed find the maximally mixed state by aver-
aging over all possible single-qubit rotations

1 1
(P)su@) = / du(g)UypU] = =Trlpll = =1, (27)
SU(2) 2 2

since density matrices have unit trace.

c) We now consider only random rotations about the z-axis. What is the relevant
symmetry group and representation in this case? Why can Eq. (26) not be directly
applied to compute this average?

(3 marks)

The relevant symmetry group is U(1) and the associated representation is the set of
rotation by an angle § € [0,27) about the z-axis: {U(#) = e %=/2|9 € [0,27)}.
Eq. (26) cannot be directly applied because it only holds for irreps and R, = e~%= is
not an irrep.

d) Explain how a different version of Eq. (26) can be applied to compute the state that
results on average from applying a random x rotation to a qubit.
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(4 mark)

[Taken from the lecture notes] Here we are therefore looking for a generalization of
Eq. (26) for reducible representations. Any reducible unitary representation can be
written in the form

Ulg) =P U.(g) =D Uulg)® I (28)

where T denotes the subspace that U, does not act on. Again we’ll do this calculation
for a finite group but it generalises to continuous groups:

(X)o = %Z U(g)XU(g)!
_ % 3 Z (Ua(9) © I) X (Un (9)" ® 1)
- %ZZ (Ualg) @ [:)X (Ual9)' @ L)
_ d%, é:Tr[XHx]Hx ® I,

1
=7 P Te[x11,]1I,

where II, denotes the identity projector onto the subspace spanned by the representa-
tion. That is, the input is projected down onto the irreps.

e) Hence compute the state that results on average from applying a random x rotation

to a qubit.
(2 marks)

Now we can compute what happens when we average a state p by R,(6) = e+, The
relevant symmetry group being U(1), the irreps in this case are both 1D, namely {1}
and {e""}, and we have:

U, = (1 0 ) G 4 ) (| (30)

0 e—i@
such that IT; = |[+)(+| and II_ = |—)(—]
(o =+ @ T, = (o + oDl e

As expected, this averaging Kkills off all coherence and projects onto the z-axis.



5. Variational Principle. Consider the 1D Harmonic Oscillator with H:

Use the variational principle with the trial wavefunction
W(z) = Ae™t*
to upper bound the ground state energy of H.

(9 marks)

You may find these integrals helpful:

(n—1)(n—3)..3-1 /7
o n _azQ W\/E’ fOF n even
z"e dr = 2
0

: (1t for n odd
2

We start by normalizing the trial wavefunction by imposing the constraint

/ dz|y(z)|? = A2/ dre 20" = A2, /216 =1, (34)

which yields A = (2b/7)*/4. The normalized trial wavefunction is therefore

W(z) = <2—b> . et (35)

™

To evaluate the expectation value of the Hamiltonian with respect to this trial wave-
function, we will need

1/4
% N <2?b) (—2bx)e ™", (36)
2y 20\ 2
dr® <?> (4b%2* — 2b)e™" = (40%2” — 20)y(x). (37)



We can now evaluate the expectation value

<¢|H|¢) B °°d ¢( V(- h? d? n 1 2 9 ¢( ) (38)
) TR omda?z 20" !
Y R —h2(4b22—2b)+1 2% ) (x) (39)
— . T €T 2m €T 2mw X x
% [/ 2?1 > A
_ <_ +_mw2) / drzte-2t 4 10 / delp(@)  (40)
s m 2 —00 mJ—co
2 ( 2p%* 1\ /7 h%
V2 (-5 ) et .
b mw?  h3b
_ Wb b 42
2m + 8b + m ( )
mw?  h%b
% T om o

To find the optimal value for b, we minimize (H) with respect to b

d b _ _ mw 44
o\ s Tam 0 = 0 (44)

d (mw?® k% PN _mw2+h_2 mw
N 82 2m 2h

Substituting this optimal value for b back into (H), we get

mw? [ 2h h2 rmw hw hw  hw
H) = — )+ () =7+t T =5 4
) 8 <mw)+2m(2h> 4+4 2 (45)

We thus conclude that the ground state energy is at most equal to Aw/2. Here in
fact it is exactly hw/2, because the Gaussian trial wavefunction is precisely the correct
ground state.



Longer questions

Please pick 2 questions to attempt - mark your choices clearly on the cover sheet.

Start a new sheet for each question.

Question A - Perturbation Theory

Consider a free particle in a box of width a, with sides at x = 0 and z = a. The unperturbed
problem is well-known: the eigenvalues are

EO = n?m?n? /2ma® = n2E§O),

n

and the eigenfunctions are
(x|ng) = up(x) = v/2/asin(nrx/a).

(a) We now add a perturbation
H, =W cos(mz/a).

Sketch the perturbed potential well as a function of z. Show that all the first-order
energy shifts are zero.
(4 marks)

The original potential for a particle in a box is V(z) = 0 for 0 < x < a and infinite
otherwise. The perturbation potential is:

Hy =V (x) =W cos (Wx)

a

This means the potential is modified by a cosine function with a period twice the width
of the box (since cos (”) completes half a period across the box width). The sketch
should show a cosine wave oscillating between W and —W within the interval 0 to a.

First-Order Energy Shifts
The first-order energy shift for a state |ng) is given by:
ESY = (no|Hi|no) = Jo un(2) Hyuy (x) do

Substituting the given wavefunction and perturbation, we get:

EY = fo ([sm (””)) W cos (%) <\/Esm (””)) dr = % foa sin? (%) coS (%) dx

EY = 0.

Thus, all first-order energy shifts are zero.
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(b) Find the first order correction to the ground state wavefunction. Sketch the ground
state wavefunction and the correction.

(7 marks)

The first-order correction to the ground state wavefunction |1) is given by:

|1(1)> - Z M‘m>_

0 0
— Ei ) E}(n)
Calculating the matrix elements:

(mlHy[1) = /wm W cos () () .

Substituting the wavefunctions:

(m|Hy|1) = ¥ /a sin (mﬂx> cos <E> sin (E) dx.
0

a a a

Using trigonometric identities and orthogonality:

sin(A) cos(B) — %[sin(A + B) +sin(A — B)],

(mlHy|1) = %/0% [Sin <w> + sin (@)1 da.

Only terms with m = 2 will be non-zero:

W e . [(2xx\ . /7w
(2|Hq|1) = ;/0 sin (T) sin <?> dzx.

we get:

This evaluates to:

W
<2|H1|1> - 5
So the first-order correction is:
(1) 5
1) = — 12,
E{o) B Eéo)
With £\ = 27 and B = 4E":
w
5 %74
10) = — 2 = —— ).

— " 0|
B —4p

The corrected ground state wavefunction is:
(1) ]2 Tz w 2 . 2rx
wl(l’) + wl (LU) = \/;Sln (z) - 6E—§0)\/;Sln (T .
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(c)

What constraints are required on W for perturbation theory to be a suitable approxi-
mation method?

(3 marks)

For perturbation theory to be valid, the perturbation must be small compared to
the unperturbed Hamiltonian. This means that the energy shifts and wavefunction
corrections due to the perturbation should be much smaller than the unperturbed

quantities.
| H
<¢(0)| 1|¢(I§ <1 = ' <1 = |W|<6EY,
E;" — FE
1 m
where £} 0 _ " is the ground state energy of the unperturbed system.

What is the second-order shift £ for n = 1 and n = 2?

(11 marks)

Hint: You will find the evaluation of the integrals much simplified if you start by
proving for the perturbation a relationship of the form

Hiu, = a(unt + Uny).

This relationship turns the integrals into orthogonality integrals. You will need to
think about the meaning of this equation for n = 1 since n — 1 is then zero, while u,,
is only defined for n > 0.

The second-order energy shift is given by:

Z [(m|Hy|n)[?

m#n ET(ZO E(O

Using the hint:
len = 04(%—1 + 77Z1n-i-1)a

we get:
(m|Hi|n) = a(dmmn-1+ mni1)-
For n = 1:
H1¢1 = a)y.
Thus:
(2|Hy|1) = a.
The second-order shift for n = 1 is:
)2 2 2 2
E®) Z | m|H1|1 | o _ el e

I E E§0>—E§°> 35" 3
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For n = 2:
Hipy = iy + 3).

Thus:
(1|H,]2) = o,  (3|H1|2) = «.
The second-order shift for n = 2 is:

o] o]

EY = .
Eéo) — Efo) Eéo) B Eéo)

Since E§°) = 4E£0):

Simplifying:

E§2):]o¢|2 11 o 5-31) _ 2|oz|2'
3 5E© 156 | 155"

Thus, the second-order shifts are:

2

g ol
b 3EY
2 2

B = 225
15E
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Question B - Symmetry

The quaternion group (g is an order 8 non-abelian group which is isomorphic to the quater-
nions under multiplication. Do not worry if you do not know anything about quaternions,
all you need to know to address this question is that Qs has the following Cayley table:

e e i 1 35 J k k
ele e i i j j k k
ele e i i 35 j k k
ili i e ek k joj
ili i e ek k j g
jli j k ke e i i
Jl7 4 k k e e i i
kElk k j 7 @ i € e
klk kK 5 j i i e &

1. What order are the proper (i.e., non-trivial) subgroups of Qg?
(2 marks)
1 point Stating langranges theorem
1 point Finding that the order of the subgroups are 4,2. 2
Equivalently
2 point for any equivalent way of finding the orders (i.e. finding all the subgroups...)

Note, without justification:

e 2 point Write 2 and 4
e | point write 2 or 4
e () point write some wrong (random guess)
The order of the subgroups is 4 and 2 (for the subgroup only involving {e,e}). We
can check by using Lagrange theorem that this are the only options. Indeed, because
|G|/|H| =n € N, we can only have |H| € {2,4}.
2. Find two of the proper subgroups of Qg
(3 marks)
1 point per {e,€}.
2 point for any other (up to 3 points).

As mentioned, one of the subgroups is {e,€}. We can also find {e,e,i,4}.
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3. The conjugacy classes of Qg are

{et. {eb {i,i} {55} {k. &}
Verify that {e} and {k,k} are indeed conjugacy classes.
(3 marks)
1 point Define conjugacy class (or use the definition implicitely).
1 point for verifying identity {e}.
1 point for verifying the {k,k}.
Note:

e 2 point If they make a mistake identifying the k conjugacy class.
— Wrongly identify e as the inverse of e.
— Say that u =k

e They put all the products that they can think of without identifying which one
is the correct.

1

For x, y to be a conjugacy class there has to exist some u such that uzu™" = y. Trivially,

if we choose u = e, then eee = e. Also if we choose u = iu~"' =i, then iki = k.

4. What is an irreducible representation (or, ‘irrep’ for short)? How many (non-equivalent)
irreducible representations does Qg have?
(3 marks)

1 point Definition of irrep. General definition (not very accurate, just enough to make
sense)

1 point State the useful lemma.
1 point Saying how many irreps.
The number of conjugacy classes is equal to the number of non-equivalent irreps. Thus

we have 5 non-equivalent irreps.

5. Consider this representation of Qg:

er—>10 € —
01



State a theorem that allows you to determine whether a representation is irreducible.
Hence determine whether this representation is irreducible.

(3 marks)
1 point For saying that Schur’s second lemma can help with this (and stating it).

1 point For stating that it is impossible for a matrix that is not proportional to identity
to commute with all of them.

1 point For proving it. The ideal way of determining this is by saying that there is no
matrix A different than identity that can be diagonalised in the basis of all of them at
the same time.

1 point Th 7.11.4
2 point Using it to find that it is an irrep.
The second Schurs lemma can help with this. Indeed there is no matrix A except for

M such that [A, X] =0X € {e,i,5,k,2,4,7,k}

. State a theorem that allows you to determine the dimensions of a groups irreps. Hence,
what are the dimensions of each of the quarternion’s groups irreps?

(3 marks)
1 point Identifying Burnside lemma and stating it (directly or indirectly)

1 point Identifying that the trivial representation exists. (even if it is not explicitely,
i.e. they find the correct dim).

1 point Computing all the other dimensions.

Burnside lemma. Because the previous irrep has dimension 2, we need
Y i2=h (46)
i

and thus, the other irreps are of dimension 1. (4+141+1+1 = 8, because the trivial
representation exists we need some irrep with dimension one.)

. State a theorem that can help identify a groups 1D irreps. Hence identify the quater-
nion’s groups 1D irreps.

(Hint you will need to use the Cayley table to help find the irreps. You may also find
that recalling the irreps of C3v helpful to guess.)

(8 marks)

1 point State (petite) orthogonality theorem. / grand/ any other that can be of use.
People find clever wais of doing this.
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1 point Trivial representation

1 point Identify + 1 point check {e,i,e,i} — 1, {j,k, 7, k} — —1
1 point Identify + 1 point check {e,e, 75,7} — 1, {4,4,k, k} — —1
1 point Identify + 1 point check {e, e, &k, k} — 1, {i,7,5,7} — —1
Note:

e 1 point if they don’t finish but explain the strategy good enough and/or find
middle steps that can be helpful. Il.e. they use previous results to say that
R(z) = R(z).

We can start by finding the trivial representation, i.e. all the elements are 1.
We will use the petite orthogonality theorem. For 1-D irreps is pretty useful.
Z Xa(9)X6(9) = Ndap (47)

geG
where xr(g) = Tr[R(g)].

Due to the nature of the table, we can also see that if {e,i,e,i} — 1, {j, k, 7, k} — —1,
also fulfils the Cayley table. Using the petite orthogonality theorem we can see that
this can also be an irrep. We do this by comparing it to the previous irreps. First to
the trivial
D Xalg) =4-4=0 (48)
geG
and also with the one from the previous exercise

D xal@lg) =2-2=0 (49)

geG

Applying the petite orthogonality theorem to this new irrep, we find that

e =e (50)
ete+i+i=0 (51)
j+i+k+k=0 (52)

therefore, another representation we can find is {e,e, 7,5} — 1, {,i,k, k} — —1. A
different representation is switching j, k to find {e,e, k, k} — 1, {i,4,7,7} — —1. And
with this we found the 4 irreps, i.e.
{e,i,e,i,7,k, j,k} — 1
{e,ie,i} — 1, {j,k,j,k} — —1
{e,e,5,7} = 1, {i,i,k, k} — —1
{e,e,k,k}y — 1, {i,i,7,7} — —1
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Question C - Quantum Bomb Testing

Let’s start by getting familiar with a parameterized beamsplitter for the form sketched below:

k1 WV k1

k2

The action of this parameterized beamsplitter on the mode operators (aJ{, a;) is given by the

unitary

Uper — U;S2 _ |:COS(9 —sin 0]

sinf cos®

1. Find the output state for the case that the initial state contains: (i) 1 photon in mode
k;, vacuum in mode ky (ii) One photon in each mode (iii) Two photons in mode k;.

(10 marks)
We first note that the beamsplitter transforms the mode operators as
ai — COS «9aJ{ + sin Qag

al — cosfal — sinfal.

We then state the initial states as (i) [1)]0) = al]0)10), (i) |1) [1) = alad |0) |0), and
(iii) |2) |0) = alal |0) |0). Note the normalization in case (iii) due to the fact that

a'|n) =vn+1 |n +1).

Applying the unitary transformation to all the mode operators then yields
(i): (cos fal + sin 9(1;) |0) |0) = cos @ |1) |0) + sin @ |0) |1)
(ii): (cos fal + sin 0a§> (cos fal — sin 9a£> |0) |0)
= [— cosOsinfalal + (cos# — sin” §) alal + cos B sin Qa;ag] |0) |0)
= —V2cosfsinf|2)[0) + (cos®f — sin® ) [1) |1) + V2 cos sin 6 [0) [2)

1
= cos(20) [1) [1) + ﬁsm(%) (10} [2) = 12)10))

1
(iii): 7 (cos fal + sin Gag) (cos fal + sin 9a£> 0) |0)
1
= 7 (c:os2 falal + 2 cos 0 sin fal al + sin? 9@5@3) |0) |0)

1
= cos® 0]2) |0) +sin® 0]0) |2) + 7 sin(20) |1) 1)

18



2. Suppose you place photon detectors in both output modes of the beamsplitter. Would
it be possible to determine which of the three initial states, (i) (ii) or (iii), you started
with after a single run of the experiment?

(2 marks)

We can immediately distinguish between the single photon case (i) and the two photon
cases (ii) and (iii) just by counting the number of photons that are detected. Distin-
guishing between (ii) and (iii) is however not possible for arbitrary angles 6, as all three
outcomes happen with non-vanishing probability for both initial states.

3. Would it be possible to determine which of the three initial states, (i) (ii) or (iii), you
started with after many runs of the experiment?

(3 marks)

The outcome states for (ii) and (iii) are different, hence, by taking many runs of the
experiment, we can compare the statistics with the expected outcomes. For example,
in (ii) the probability of measuring two photons in D2 is equal to the probability of
measuring two photons in D1. This is not the case for (iii) (except for 6 = 7), where we
can find other ways to distinguish the two states. Except for specific choices of 6, where
the probability of measuring one outcome vanishes completely for one initial state, we
can however only ever correctly determine the initial state up to some probability.

The Mach Zender interferometer is a variant on the double slit experiment where there are
only two possible paths for a photon to take. Let’s consider a version with a parameterized
beamsplitter and a box that potentially contains a bomb in one arm as shown in the figure
below. Can we use quantum trickery to test whether it contains a live bomb without actually
setting the bomb off?

D1
? ki
mirrorI é’ BS
k> k2' D2
k2 k1
k1 [BS k1
] 'mirror
Tk2

Assume a single photon enters the interferometer through the left hand arm (mode k;).
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4. Assuming there is no bomb in the interferometer, what is the probability of measuring
a photon at detectors 1 and 2 respectively?

(1 marks)

If there is no bomb, the total unitary acting on the mode operators is just UggoUpg1 =
U;SlU ps1 = 1. Hence, if a single photon enters through mode k;, the probability of
measuring the photon at D1 is 1, while the probability of measuring it at D2 is 0.

Suppose now there is a bomb in the interferometer. If the bomb does not explode, then the
photon is collapsed back into being definitely in the k; arm of the interferometer.

There are three possible outcomes when a bomb is in the interferometer:

A) The bomb explodes.

B) The bomb does not explode but you can conclude with certainty that the interferometer
does contain a bomb.

C) The bomb does not explode and you cannot tell whether or not there is a bomb.

5. What is the probability of the bomb exploding (i.e. option A) ?
(3 marks)

After the first beam splitter the photon is in a coherent superposition of being in either
path:

1)1, |0)ie, = af, |0) — BS1 — (cosfaf, + sinfaf )|0)]0) = cosf[1)|0) + sin0]0)|1)

The bomb now acts as a measurement after the first beamsplitter. From the above

equation we see that the chance of the bomb exploding (i.e. the photon being in mode
ky) is sin?(6).

6. What is the probability of finding the photon at detectors 1 and 2 if there is a bomb
but it does not explode?

(3 marks)

If the bomb does not explode, the state collapses into aLl |0) |0) = |1) |0) before passing
through the second beamsplitter. After passing through BS2, we find that the state is

1)k, |0)k, = aL]O} — BS2 — (cos QaL - sin@aL2)|0>|O> = cos 0]1)]0) — sin0|0)|1)

The probability for measuring the photon in detector 1 in this case is thus cos?(6), and
for measuring it in detector 2 it’s sin®(0).

7. Hence, what are the probabilities of options B (you detect the bomb) and C (you
cannot tell whether or not there is a bomb)?
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(3 marks)

As discussed in point 3, if there is no bomb, the photon is always detected in detector
1. If we measure the photon in detector 1, we thus don’t know whether there is a bomb

or not. The probability of this happening is

pc = p(no explosion)p(D1|no explosion) = cos?(#) cos®(6).
Similarly, we find

1
pp = p(no explosion)p(D2|no explosion) = cos?(#) sin?(f) = 1 sin®(26).
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